论文标题

邻接矩阵和与图形随机步行有关的过渡矩阵

The adjacency matrices and the transition matrices related to random walks on graphs

论文作者

Ikkai, Tomohiro, Ohno, Hiromichi, Sawada, Yusuke

论文摘要

尖的图$(γ,v_0)$诱导了Wildberger在Wildberger建造Hermitian Hypergroup的一个过渡矩阵中,从$ v_0 $开始的$γ$上随机步行。我们将提供产生冬宫超级组的必要条件,因为我们假设$(γ,v_0)$的距离定型弱。本文获得的条件连接了与$γ$相关的过渡矩阵和邻接矩阵。

A pointed graph $(Γ,v_0)$ induces a family of transition matrices in Wildberger's construction of a hermitian hypergroup via a random walk on $Γ$ starting from $v_0$. We will give a necessary condition for producing a hermitian hypergroup as we assume a weaker condition than the distance-regularity for $(Γ,v_0)$. The condition obtained in this paper connects the transition matrices and the adjacency matrices associated with $Γ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源