论文标题

FCANET:频率频道注意网络

FcaNet: Frequency Channel Attention Networks

论文作者

Qin, Zequn, Zhang, Pengyi, Wu, Fei, Li, Xi

论文摘要

注意机制,尤其是渠道注意力,在计算机视野领域取得了巨大成功。许多工作重点是如何设计有效的通道注意机制,同时忽略基本问题,即通道注意机制使用标量代表通道,这由于大量信息丢失而很难。在这项工作中,我们从不同的视图开始,并将通道表示问题视为使用频率分析的压缩过程。基于频率分析,我们在数学上证明了常规的全局平均池是频域中特征分解的特殊情况。通过证明,我们自然会概括频域中通道注意机制的压缩,并以多光谱通道注意提出我们的方法,称为FCANET。 Fcanet很简单,但有效。我们可以在计算中更改几行代码,以在现有的频道注意方法中实现我们的方法。此外,与其他有关图像分类,对象检测和实例分割任务的通道注意方法相比,所提出的方法可实现最新的结果。我们的方法可以始终优于基线剂量,具有相同数量的参数和相同的计算成本。我们的代码和模型将在https://github.com/cfzd/fcanet上公开获取。

Attention mechanism, especially channel attention, has gained great success in the computer vision field. Many works focus on how to design efficient channel attention mechanisms while ignoring a fundamental problem, i.e., channel attention mechanism uses scalar to represent channel, which is difficult due to massive information loss. In this work, we start from a different view and regard the channel representation problem as a compression process using frequency analysis. Based on the frequency analysis, we mathematically prove that the conventional global average pooling is a special case of the feature decomposition in the frequency domain. With the proof, we naturally generalize the compression of the channel attention mechanism in the frequency domain and propose our method with multi-spectral channel attention, termed as FcaNet. FcaNet is simple but effective. We can change a few lines of code in the calculation to implement our method within existing channel attention methods. Moreover, the proposed method achieves state-of-the-art results compared with other channel attention methods on image classification, object detection, and instance segmentation tasks. Our method could consistently outperform the baseline SENet, with the same number of parameters and the same computational cost. Our code and models will are publicly available at https://github.com/cfzd/FcaNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源