论文标题
在均匀磁场中2D Boussinesq系统的COUETTE流量的稳定性
Stability of Couette flow for 2D Boussinesq system in a uniform magnetic field
论文作者
论文摘要
在本文中,我们考虑域中具有磁性水力动力学对流的BousSinesQ方程,$ \ Mathbb {t} \ times \ Mathbb {r} $,并确定了Couette Flow flow $的非线性稳定性(1,0),p_ {sh} = 0,θ_{sh} = 0 $)。本文中的新颖性是,我们使用增强耗散的属性来克服困难的术语$ \ partial_ {xy}( - δ)^{ - 1} J $在线性化和非线性系统中,我们设计了一个新的傅立叶乘数运算符。然后,我们证明了线性化系统的渐近稳定性。最后,我们通过引导原理建立了完整系统的非线性稳定性。
In this paper, we consider the Boussinesq equations with magnetohydrodynamics convection in the domain $\mathbb{T} \times \mathbb{R}$ and establishes the nonlinear stability of the Couette flow $(\mathbf{u}_{sh} = (y,0), \mathbf{b}_{sh} = (1,0), p_{sh} = 0, θ_{sh} = 0$). The novelty in this paper is that we design a new Fourier multiplier operator by using the properties of the enhanced dissipation to overcome the difficult term $\partial_{xy}(-Δ)^{-1}j$ in the linearized and nonlinear system. Then, we prove the asymptotic stability for the linearized system. Finally, we establish the nonlinear stability for the full system by bootstrap principle.