论文标题
使用深厚的加强学习中的密集洛拉网络中的智能资源分配
Intelligent Resource Allocation in Dense LoRa Networks using Deep Reinforcement Learning
论文作者
论文摘要
未来几年,IoT设备计数的预期增加激发了有效算法的开发,这些算法可以帮助其有效的管理,同时保持功耗较低。在本文中,我们提出了一种智能的多通道资源分配算法,该算法称为Loradrl,并提供了详细的性能评估。我们的结果表明,提出的算法不仅显着提高了Lorawan的数据包输送率(PDR),而且还能够支持移动端设备(ED),同时确保较低的功耗较低的功耗。}因此,大多数先前的工作都可以通过提高网络能力来提高网络的使用,即提高网络的使用,即延迟我们,Lorawan,Lorawan,Lorawan,lorawan,lorawan,lorawan lorawan contern consect。与lorasim相比,Aloha \ textColor {black} {与Lora-Mab相比,达到相同的效率,同时将复杂性从EDS移至网关,从而使ED更简单,更便宜。此外,我们测试了在大规模频率干扰攻击下Loradrl的性能,并显示其对环境变化的适应性。我们表明,与基于学习的技术相比,Loradrl的输出提高了最新技术的性能,在某些情况下,PDR的提高了500 \%。
The anticipated increase in the count of IoT devices in the coming years motivates the development of efficient algorithms that can help in their effective management while keeping the power consumption low. In this paper, we propose an intelligent multi-channel resource allocation algorithm for dense LoRa networks termed LoRaDRL and provide a detailed performance evaluation. Our results demonstrate that the proposed algorithm not only significantly improves LoRaWAN's packet delivery ratio (PDR) but is also able to support mobile end-devices (EDs) while ensuring lower power consumption hence increasing both the lifetime and capacity of the network.} Most previous works focus on proposing different MAC protocols for improving the network capacity, i.e., LoRaWAN, delay before transmit etc. We show that through the use of LoRaDRL, we can achieve the same efficiency with ALOHA \textcolor{black}{compared to LoRaSim, and LoRa-MAB while moving the complexity from EDs to the gateway thus making the EDs simpler and cheaper. Furthermore, we test the performance of LoRaDRL under large-scale frequency jamming attacks and show its adaptiveness to the changes in the environment. We show that LoRaDRL's output improves the performance of state-of-the-art techniques resulting in some cases an improvement of more than 500\% in terms of PDR compared to learning-based techniques.