论文标题

界定正式验证神经网络的复杂性:几何方法

Bounding the Complexity of Formally Verifying Neural Networks: A Geometric Approach

论文作者

Ferlez, James, Shoukry, Yasser

论文摘要

在本文中,我们考虑了正式验证整流线性单元(relu)神经网络(NNS)行为的计算复杂性,其中验证需要确定NN是否满足凸多物质规格。具体而言,我们表明,对于两种不同的NN架构 - 浅NN和两级晶格(TLL)NN-(凸)多型约束的验证问题在固定验证问题的所有其他方面固定时,在NN的神经元数量中是多项式的。我们通过为每种类型的体系结构展示明确(但相似)的验证算法来实现这些复杂性结果。两种算法都可以通过超平面有效地将NN参数转化为NN输入空间的分配。这具有将原始验证问题划分为多项式的许多亚验证问题的作用,这些问题是从神经元的几何形状中得出的。我们表明可以选择这些子问题,以便NN纯粹是每个仿射中的仿射,因此每个子问题在多项式时间内都可以通过线性程序(LP)解决。因此,可以使用已知的算法来获得用于原始验证问题的多项式时间算法,以在超平面布置中枚举区域。最后,我们将提出的算法调整为动态系统的验证,特别是当这些NN体系结构用作LTI系统的状态反馈控制器时。我们进一步评估了该方法的生存能力。

In this paper, we consider the computational complexity of formally verifying the behavior of Rectified Linear Unit (ReLU) Neural Networks (NNs), where verification entails determining whether the NN satisfies convex polytopic specifications. Specifically, we show that for two different NN architectures -- shallow NNs and Two-Level Lattice (TLL) NNs -- the verification problem with (convex) polytopic constraints is polynomial in the number of neurons in the NN to be verified, when all other aspects of the verification problem held fixed. We achieve these complexity results by exhibiting explicit (but similar) verification algorithms for each type of architecture. Both algorithms efficiently translate the NN parameters into a partitioning of the NN's input space by means of hyperplanes; this has the effect of partitioning the original verification problem into polynomially many sub-verification problems derived from the geometry of the neurons. We show that these sub-problems may be chosen so that the NN is purely affine within each, and hence each sub-problem is solvable in polynomial time by means of a Linear Program (LP). Thus, a polynomial-time algorithm for the original verification problem can be obtained using known algorithms for enumerating the regions in a hyperplane arrangement. Finally, we adapt our proposed algorithms to the verification of dynamical systems, specifically when these NN architectures are used as state-feedback controllers for LTI systems. We further evaluate the viability of this approach numerically.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源