论文标题
主要特征中的Hom-sssociative Weyl代数
The hom-associative Weyl algebras in prime characteristic
论文作者
论文摘要
我们在主要特征的主要特征领域中引入了第一个hom-sassociative Weyl代数,作为主要特征中第一个关联Weyl代数的概括。首先,我们研究由一般的“扭曲”程序由联想代数构建的HOM缔合代数的特性。然后,在这些结果的帮助下,我们确定了第一个hom-缔合性Weyl代数的通勤者,中心,核和衍生物集。我们还将它们分类为同构,除其他外,所有非零内态上的所有非态性具有侵入性,但不是过滤的。最后,我们证明它们可以被描述为第一个关联Weyl代数的多参数形式的Hom-Hom-缔合性变形,并且这种变形会引起相应的Lie代数的多参数形式的hom-hom-hom-hom-hom-lie变形。
We introduce the first hom-associative Weyl algebras over a field of prime characteristic as a generalization of the first associative Weyl algebra in prime characteristic. First, we study properties of hom-associative algebras constructed from associative algebras by a general "twisting" procedure. Then, with the help of these results, we determine the commuter, center, nuclei, and set of derivations of the first hom-associative Weyl algebras. We also classify them up to isomorphism, and show, among other things, that all nonzero endomorphisms on them are injective, but not surjective. Last, we show that they can be described as a multi-parameter formal hom-associative deformation of the first associative Weyl algebra, and that this deformation induces a multi-parameter formal hom-Lie deformation of the corresponding Lie algebra, when using the commutator as bracket.