论文标题
LS 〜5039中假设的冷脉冲星风的特性
Properties of a hypothetical cold pulsar wind in LS~5039
论文作者
论文摘要
LS〜5039是一种强大的伽马射线二进制,可能容纳了非刺激性脉冲星。尽管可用的数据丰富,但非热发射器的电源仍然未知。我们使用动态辐射数值模型和多波长数据来限制可能在LS 〜5039中为非热发射器供电的脉冲星的性质。我们进行了对超级媒体(低$ b $)冷$ e^\ pm $ - 孔子的模拟,康普顿散布了恒星光子,并且与恒星风动态相互作用。对于不同风模型,计算了能量损失对未落后的$ e^\ pm $ - 风的动力学以及两风接触不连续性的几何形状的影响。预测的$ e^\ pm $ - $ - $ - 风辐射在Periastron处于最高状态时,将与LS〜5039数据进行比较。各向同性冷$ e^\ pm $ -wind预测X射线对Periastron的X射线的最小辐射高出$ \ sim 3 $。在各向异性风盒和$ \ gtrsim中,如果风轴处于$ \ \ sillsim 20-40^\ circ $,则不会违反风速数据,从视线范围为$ \ \ lyssim 6-24 $ \%),根据anisotropic the andsotlopic dise^$ the loreents,in 2 nif ins vist^fine fine fiste fist y if tive fisters fisters fistion。风能可能更高,但需要$ e^\ pm $ -Multiplicities $ \ sim 10^6 $和$ 10^9 $,分别为$ 10^{ - 2} $ 〜S和10〜S PULSAR时期。研究的模型预测,LS〜5039中的低$ B $ Cold Pulsar $ e^\ pm $ - 应具有强烈的各向异性,并且在10^2-10^3 $中具有风lorentz factor $ \,并且具有很高的多样性,或者具有微观的触发方向。低$ b $,以冷bary式的风为主导的风,但是多重性应该相当低,而在风终止时,baryon到$ e^\ pm $的能量转移应该非常有效。强烈磁性的冷风似乎是最有利的(最少约束)的选择。
LS~5039 is a powerful gamma-ray binary that probably hosts a non-accreting pulsar. Despite the wealth of data available, the power source of the non-thermal emitter is still unknown. We use a dynamical-radiative numerical model and multiwavelength data to constrain the properties of a pulsar wind that may power the non-thermal emitter in LS~5039. We ran simulations of an ultrarelativistic (low-$B$) cold $e^\pm$-wind that Compton scatters stellar photons and that dynamically interacts with the stellar wind. The effects of energy losses on the unshocked $e^\pm$-wind dynamics, and the geometry of the two-wind contact discontinuity, are computed for different wind models. The predicted unshocked $e^\pm$-wind radiation at periastron, when expected to be highest, is compared to LS~5039 data. The minimum possible radiation from an isotropic cold $e^\pm$-wind overpredicts the X-ray to gamma-ray fluxes at periastron by a factor of $\sim 3$. In the anisotropic wind case X-ray and $\gtrsim 100$ MeV data are not violated by wind radiation if the wind axis is at $\lesssim 20-40^\circ$ from the line of sight (probability of $\lesssim 6-24$\%), depending on the anisotropic wind model, or if the wind Lorentz factor $\in 10^2-10^3$, in which case the wind power can be higher, but it requires $e^\pm$-multiplicities of $\sim 10^6$ and $10^9$ for a $10^{-2}$~s and 10~s pulsar period, respectively. The studied model predicts that a low-$B$ cold pulsar $e^\pm$-wind in LS~5039 should be strongly anisotropic, with either a wind Lorentz factor $\in 10^2-10^3$ and very high multiplicities or with a fine-tuned wind orientation. A low-$B$, cold baryon-dominated wind would be possible, but then the multiplicities should be rather low, while the baryon-to-$e^\pm$ energy transfer should be very efficient at wind termination. A strongly magnetized cold wind seems to be the most favorable (least constrained) option.