论文标题

基于放置在光子晶体的一个孔中的人造原子的杂化量子光子学

Hybrid quantum photonics based on artificial atoms placed inside one hole of a photonic crystal cavity

论文作者

Fehler, Konstantin G., Antoniuk, Lukas, Lettner, Niklas, Ovvyan, Anna P., Waltrich, Richard, Gruhler, Nico, Davydov, Valery A., Agafonov, Viatcheslav N., Pernice, Wolfram H. P., Kubanek, Alexander

论文摘要

基于自旋的量子光子学有望实现分布式量子计算和量子网络。性能取决于有效的纠缠分布,在这种分布中,可以通过空腔量子电动力学提高效率。核心挑战是开发具有大型自旋耦合率和高操作带宽的紧凑型设备。光子晶体腔包括强场限制,但对原子系统在模式场最大程度上的准确定位提出了很高的要求。钻石的彩色中心,尤其是负收集的硅面积中心,成为一种有前途的原子样系统。较大的光谱稳定性并获得长寿的核旋转记忆,实现了量子网络节点的基本演示,包括内存增强量子通信。在混合方法中,我们确定地将siv $^ - $ - 包含纳米木德斯的一个孔中放置在一个孔中的一个孔中,这是一个一维的,自由的,Si $ _3 $ n $ _4 $ _4 $ _4 $的光子晶体腔,并相干地将单个的光学过渡到腔模式。我们通过利用两种模式组合物,波引导,purcell-Enhanshancement和腔共振调节来优化光耦合。与自由空间相比,所得的光子通量增加了14倍以上。相应的寿命缩短到460 PS以下,将潜在的操作带宽超出GHz速率。我们的结果标志着基于与纳米登录中心的SIV $^ - $ - 中心实现量子网络节点的重要步骤。

Spin-based quantum photonics promise to realize distributed quantum computing and quantum networks. The performance depends on efficient entanglement distribution, where the efficiency can be boosted by means of cavity quantum electrodynamics. The central challenge is the development of compact devices with large spin-photon coupling rates and high operation bandwidth. Photonic crystal cavities comprise strong field confinement but put high demands on accurate positioning of an atomic system in the mode field maximum. Color center in diamond, and in particular the negatively-charged Silicon-Vacancy center, emerged as a promising atom-like systems. Large spectral stability and access to long-lived, nuclear spin memories enabled elementary demonstrations of quantum network nodes including memory-enhanced quantum communication. In a hybrid approach, we deterministically place SiV$^-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity and coherently couple individual optical transitions to the cavity mode. We optimize the light-matter coupling by utilizing two-mode composition, waveguiding, Purcell-enhancement and cavity resonance tuning. The resulting photon flux is increased by more than a factor of 14 as compared to free-space. The corresponding lifetime shortening to below 460 ps puts the potential operation bandwidth beyond GHz rates. Our results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$^-$- center in nanodiamonds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源