论文标题

非平滑凸孔concove minimax优化的主要半高ximal交替坐标方法

Majorized Semi-proximal Alternating Coordinate Method for Nonsmooth Convex-Concave Minimax Optimization

论文作者

Dai, Yu-Hong, Wang, Jiani, Zhang, Liwei

论文摘要

最小值优化问题是由现代机器学习和传统研究领域引起的重要一类优化问题。尽管有许多用于求解平滑凸连接最小问题问题的数值算法,但非平滑凸Conconcove-Concove minimax问题的数值算法非常罕见。本文旨在为结构化的非平滑凸孔concave minimax问题开发有效的数值算法。提出了一个主要的半高轴交替坐标方法(MSPACM),其中采用了主要的二次凸凸置函数,以近似于目标函数的平滑部分,并且在每个子问题中添加了半高度术语。这种构造使每次迭代的子问题都可以解决,甚至可以在巧妙地选择半倍率术语时很容易解决。我们证明了在轻度假设下算法MSPACM的全球收敛性,而无需强烈的凸含量条件。在溶液映射的局部度量次尺度下,我们证明算法MSPACM具有收敛的线性速率。据报道,初步数值结果是为了验证算法MSPACM的效率。

Minimax optimization problems are an important class of optimization problems arising from modern machine learning and traditional research areas. While there have been many numerical algorithms for solving smooth convex-concave minimax problems, numerical algorithms for nonsmooth convex-concave minimax problems are very rare. This paper aims to develop an efficient numerical algorithm for a structured nonsmooth convex-concave minimax problem. A majorized semi-proximal alternating coordinate method (mspACM) is proposed, in which a majorized quadratic convex-concave function is adopted for approximating the smooth part of the objective function and semi-proximal terms are added in each subproblem. This construction enables the subproblems at each iteration are solvable and even easily solved when the semiproximal terms are cleverly chosen. We prove the global convergence of the algorithm mspACM under mild assumptions, without requiring strong convexity-concavity condition. Under the locally metrical subregularity of the solution mapping, we prove that the algorithm mspACM has the linear rate of convergence. Preliminary numerical results are reported to verify the efficiency of the algorithm mspACM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源