论文标题

用于频率乘法的拓扑铁磁纹理的非线性动力学

Nonlinear dynamics of topological ferromagnetic textures for frequency multiplication

论文作者

Rodrigues, Davi R., Nothhelfer, Jonas, Mohseni, Morteza, Knapman, Ross, Pirro, Philipp, Everschor-Sitte, Karin

论文摘要

我们提出,与定义明确的内部模式相关的拓扑结构的非线性射频动力学和纳米级尺寸倡导它们用作自旋系统内物体可扩展的频率乘数。频率乘数允许输入和输出频率之间的频率转换,从而显着增加了可控制的可访问频率的范围。特别是,我们通过相应的特征频率的分数探索了拓扑磁纹理的本征模的激发。我们通过微磁模拟显示,对系统的低频扰动可以有效地以更高的幅度激发有界模式。例如,我们通过施加一半,三分之一和四分之一的特征频率,激发了分离的铁磁天空的本征模。我们预测,通过磁性结构的频率乘法是一种通用现象,它与磁纹理的特定特性无关,并且也适用于磁涡旋,液滴和其他拓扑纹理。

We propose that the non-linear radio-frequency dynamics and nanoscale size of topological magnetic structures associated to their well-defined internal modes advocate for their use as in-materio scalable frequency multipliers for spintronic systems. Frequency multipliers allow for frequency conversion between input and output frequencies, and thereby significantly increase the range of controllably accessible frequencies. In particular, we explore the excitation of eigenmodes of topological magnetic textures by fractions of the corresponding eigenfrequencies. We show via micromagnetic simulations that low-frequency perturbations to the system can efficiently excite bounded modes with a higher amplitude. For example, we excited the eigenmodes of isolated ferromagnetic skyrmions by applying half, a third and a quarter of the corresponding eigenfrequency. We predict that the frequency multiplication via magnetic structures is a general phenomenon which is independent of the particular properties of the magnetic texture, and works also for magnetic vortices, droplets and other topological textures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源