论文标题

平行Prony的方法与多元矩阵铅笔方法及其数值方面

Parallel Prony's method with multivariate matrix pencil approach and its numerical aspect

论文作者

Bosner, Nela

论文摘要

Prony的方法是一种标准工​​具,用于求解许多成像和数据分析问题,导致参数识别以稀疏指数总和$$ f(k)= \ sum_ {j = 1}^{t}^{t} c_ {j} e^{J} \ Mathbb {z}^{d},$$,其中参数为成对的$ \ {t_ {j} \} _ { \ mathbb {c} \ setMinus \ {0 \} $是非零的。我们调查的重点是基于多元矩阵铅笔方法的Prony方法变体。该方法构造矩阵$ s_ {1} $,\ ldots,$ s_ {d} $从采样值中,它们的对角度同时产生参数$ \ {t_ {j} {j} \} _ {j = 1}}^{m} $。参数$ \ {c_ {c_ {j} \} _ {j = 1}^{m} $被计算为线性最小二乘问题的解决方案,其中该问题的矩阵由$ \ {t_ {t_ {j {j} \} _ {由于该方法涉及独立的生成和操纵一定数量的矩阵,因此在多个级别上平行整个计算过程的固有能力。因此,我们提出了Prony方法的并行版本,以提高其效率。有关生成矩阵的任务分为GPU的螺纹和CPU块,其中较重的负载放在GPU上。从算法的角度来看,CPU专用于更复杂的任务。通过仔细选择解决子任务的算法,CPU和GPU之间的负载是平衡的。除了并行化技术外,我们还关注一些数值问题,并且在嘈杂的输入数据的情况下,我们提供了该方法的详细数值分析。最后,我们进行了一组数值测试,这些测试证实了平行算法的出色效率和正向误差的一致性,并通过数值分析的结果来确认。

Prony's method is a standard tool exploited for solving many imaging and data analysis problems that result in parameter identification in sparse exponential sums $$f(k)=\sum_{j=1}^{T}c_{j}e^{-2πi\langle t_{j},k\rangle},\quad k\in \mathbb{Z}^{d},$$ where the parameters are pairwise different $\{ t_{j}\}_{j=1}^{M}\subset [0,1)^{d}$, and $\{ c_{j}\}_{j=1}^{M}\subset \mathbb{C}\setminus \{ 0\}$ are nonzero. The focus of our investigation is on a Prony's method variant based on a multivariate matrix pencil approach. The method constructs matrices $S_{1}$, \ldots , $S_{d}$ from the sampling values, and their simultaneous diagonalization yields the parameters $\{ t_{j}\}_{j=1}^{M}$. The parameters $\{ c_{j}\}_{j=1}^{M}$ are computed as the solution of an linear least squares problem, where the matrix of the problem is determined by $\{ t_{j}\}_{j=1}^{M}$. Since the method involves independent generation and manipulation of certain number of matrices, there is intrinsic capacity for parallelization of the whole computation process on several levels. Hence, we propose parallel version of the Prony's method in order to increase its efficiency. The tasks concerning generation of matrices is divided among GPU's block of threads and CPU, where heavier load is put on the GPU. From the algorithmic point of view, the CPU is dedicated to the more complex tasks. With careful choice of algorithms solving the subtasks, the load between CPU and GPU is balanced. Besides the parallelization techniques, we are also concerned with some numerical issues, and we provide detailed numerical analysis of the method in case of noisy input data. Finally, we performed a set of numerical tests which confirm superior efficiency of the parallel algorithm and consistency of the forward error with the results of numerical analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源