论文标题
通过主题统一同质和异质网络变换
Unifying Homophily and Heterophily Network Transformation via Motifs
论文作者
论文摘要
高阶接近度(HOP)是大多数网络嵌入方法的基础,因为它对下游网络分析任务上节点嵌入和性能的质量有重大影响。大多数现有的HOP定义是基于同质性的,将紧密和高度互连的节点紧密地在嵌入空间或异质上,以在嵌入后放置遥远但结构上相似的节点在一起。在现实世界网络中,两者都可以共存,因此只有一个人可以限制预测性能和解释性。但是,没有一般和普遍的解决方案都考虑到这两个方案。在本文中,我们提出了一个简单而强大的框架,称为同质和异性保存网络变换(H2NT),以捕获跳动,以灵活地统一同质和异质。具体而言,H2NT利用基元表示将网络转换为通过Micro级别和宏观步行路径具有混合假设的新网络。 H2NT可以用作增强剂,可以与任何现有的网络嵌入方法集成在一起,而无需对后者方法进行任何更改。由于H2NT可以用基序结构稀疏网络,因此它还可以在集成后提高现有网络嵌入方法的计算效率。我们对节点分类,结构性角色分类和基序预测进行实验,以显示优于最先进方法的卓越预测性能和计算效率。尤其是,基于深条小路的H2 NT在基序预测上的精度方面取得了24%的提高,而与原始的DeepWalk相比,缩短了46%的计算时间。
Higher-order proximity (HOP) is fundamental for most network embedding methods due to its significant effects on the quality of node embedding and performance on downstream network analysis tasks. Most existing HOP definitions are based on either homophily to place close and highly interconnected nodes tightly in embedding space or heterophily to place distant but structurally similar nodes together after embedding. In real-world networks, both can co-exist, and thus considering only one could limit the prediction performance and interpretability. However, there is no general and universal solution that takes both into consideration. In this paper, we propose such a simple yet powerful framework called homophily and heterophliy preserving network transformation (H2NT) to capture HOP that flexibly unifies homophily and heterophily. Specifically, H2NT utilises motif representations to transform a network into a new network with a hybrid assumption via micro-level and macro-level walk paths. H2NT can be used as an enhancer to be integrated with any existing network embedding methods without requiring any changes to latter methods. Because H2NT can sparsify networks with motif structures, it can also improve the computational efficiency of existing network embedding methods when integrated. We conduct experiments on node classification, structural role classification and motif prediction to show the superior prediction performance and computational efficiency over state-of-the-art methods. In particular, DeepWalk-based H2 NT achieves 24% improvement in terms of precision on motif prediction, while reducing 46% computational time compared to the original DeepWalk.