论文标题
与被困离子抑制易耐断层量子误差校正的串扰抑制
Crosstalk Suppression for Fault-tolerant Quantum Error Correction with Trapped Ions
论文作者
论文摘要
实验量子信息处理器中的物理量表不可避免地会暴露于不同的噪声和缺陷来源,这导致错误通常会积累阻碍我们可靠地执行长时间计算的能力。朝着可伸缩和稳健的量子计算方面的进展取决于利用量子误差校正(QEC)积极与这些不希望的效果作斗争。在这项工作中,我们介绍了基于一个由射频陷阱限制的单个离子串的量子计算结构中的串扰误差的全面研究,并通过单独缩放的激光束操纵。这种类型的错误会影响观众码头,理想情况下,在应用在不同的活动量子位上解决的单量子和两倍量子门时,应保持不变。我们从第一原则对串扰错误进行了显微镜检查,并提出了一项详细的研究,表明使用连贯的误差建模与不连贯的误差建模,并讨论在门水平上积极抑制此串扰的策略。最后,我们研究了残留串扰误差对耐断层QEC的性能的影响,从近期捕获离子实验中确定了需要实现的实验目标值,以达到具有低距离拓扑代码的有益QEC的突破点。
Physical qubits in experimental quantum information processors are inevitably exposed to different sources of noise and imperfections, which lead to errors that typically accumulate hindering our ability to perform long computations reliably. Progress towards scalable and robust quantum computation relies on exploiting quantum error correction (QEC) to actively battle these undesired effects. In this work, we present a comprehensive study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams. This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits. We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level. Finally, we study the impact of residual crosstalk errors on the performance of fault-tolerant QEC numerically, identifying the experimental target values that need to be achieved in near-term trapped-ion experiments to reach the break-even point for beneficial QEC with low-distance topological codes.