论文标题

显着对象检测的集中信息互动

Centralized Information Interaction for Salient Object Detection

论文作者

Liu, Jiang-Jiang, Liu, Zhi-Ang, Cheng, Ming-Ming

论文摘要

U形结构在显着对象检测中显示出其优势,以有效地结合多尺度特征。但是,大多数现有的基于U形的方法都致力于改善自下而上和自上而下的路径,同时忽略它们之间的连接。本文表明,通过集中这些连接,我们可以实现它们之间的跨尺度信息相互作用,从而获得语义上更强和更精确的特征。为了激发新提出的策略的潜力,我们进一步设计了一个相对的全球校准模块,该模块可以同时处理而无需空间插值而进行多尺度输入。从上述策略和模块中受益,我们提出的方法可以更有效地汇总特征,同时仅引入一些其他参数。我们的方法可以通过替换自下而上和自上而下的途径之间的连接来与各种现有的基于U形的显着对象检测方法合作。实验结果表明,我们提出的方法对五个广泛使用的基准具有较小的计算复杂性,对先前最新的方法表现出色。源代码将公开可用。

The U-shape structure has shown its advantage in salient object detection for efficiently combining multi-scale features. However, most existing U-shape based methods focused on improving the bottom-up and top-down pathways while ignoring the connections between them. This paper shows that by centralizing these connections, we can achieve the cross-scale information interaction among them, hence obtaining semantically stronger and positionally more precise features. To inspire the potential of the newly proposed strategy, we further design a relative global calibration module that can simultaneously process multi-scale inputs without spatial interpolation. Benefiting from the above strategy and module, our proposed approach can aggregate features more effectively while introducing only a few additional parameters. Our approach can cooperate with various existing U-shape-based salient object detection methods by substituting the connections between the bottom-up and top-down pathways. Experimental results demonstrate that our proposed approach performs favorably against the previous state-of-the-arts on five widely used benchmarks with less computational complexity. The source code will be publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源