论文标题

通过强大的学习改善无监督的图像聚类

Improving Unsupervised Image Clustering With Robust Learning

论文作者

Park, Sungwon, Han, Sungwon, Kim, Sundong, Kim, Danu, Park, Sungkyu, Hong, Seunghoon, Cha, Meeyoung

论文摘要

无监督的图像聚类方法通常会引入替代目标,以间接训练模型,并受到错误的预测和过度自信的结果。为了克服这些挑战,当前的研究提出了一种创新的模型RUC,其灵感来自强大的学习。 RUC的新颖性在于利用现有图像聚类模型的伪标记为嘈杂的数据集,可能包括错误分类的样本。它的再训练过程可以修改未对准知识并减轻预测中的过度自信问题。该模型的灵活结构使得可以用作其他聚类方法的附加模块,并帮助它们在多个数据集上实现更好的性能。广泛的实验表明,所提出的模型可以通过更好的校准来调整模型置信度,并对对抗噪声获得额外的鲁棒性。

Unsupervised image clustering methods often introduce alternative objectives to indirectly train the model and are subject to faulty predictions and overconfident results. To overcome these challenges, the current research proposes an innovative model RUC that is inspired by robust learning. RUC's novelty is at utilizing pseudo-labels of existing image clustering models as a noisy dataset that may include misclassified samples. Its retraining process can revise misaligned knowledge and alleviate the overconfidence problem in predictions. The model's flexible structure makes it possible to be used as an add-on module to other clustering methods and helps them achieve better performance on multiple datasets. Extensive experiments show that the proposed model can adjust the model confidence with better calibration and gain additional robustness against adversarial noise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源