论文标题

关于几乎kähler歧管和乔伊斯的示例的形式

On the formality of nearly Kähler manifolds and of Joyce's examples in $G_2$-holonomy

论文作者

Amann, Manuel, Taimanov, Iskander A.

论文摘要

这是一个突出的猜想(与Riemannian的几何形状和代数拓扑相关),所有简单地连接的特殊自治的紧凑型歧管都应是正式的空间,即,应从其理性同学代数中衍生出其合理同质类型,这是在理性同源理论中的特定属性。现在,特殊利益在于卓越的自动企业$ g_2 $和$ spin(7)$。在本文中,我们提供了一种方法,即如何确认乔伊斯著名的固体例子$ g_2 $确实是正式的空间;我们具体地为一个示例施加了此计算,该计算可能是其余乔伊斯示例的蓝图(可能也可能是固体$ spin(7)$)。在这些考虑因素之前,还有另一个结果,确定了歧管的形式承认特殊结构:我们证明了几乎kähler歧管的形式。可以找到这两个结果之间的联系,这是因为“特殊的全能”和“几乎是Kähler”自然概括了紧凑的Kähler歧管,其形式是古典的,由Deligne-Griffiths-Morgan-Morgan-Sullivan的经典定理。

It is a prominent conjecture (relating Riemannian geometry and algebraic topology) that all simply-connected compact manifolds of special holonomy should be formal spaces, i.e., their rational homotopy type should be derivable from their rational cohomology algebra already -- an as prominent as particular property in rational homotopy theory. Special interest now lies on exceptional holonomy $G_2$ and $Spin(7)$. In this article we provide a method of how to confirm that the famous Joyce examples of holonomy $G_2$ indeed are formal spaces; we concretely exert this computation for one example which may serve as a blueprint for the remaining Joyce examples (potentially also of holonomy $Spin(7)$). These considerations are preceded by another result identifying the formality of manifolds admitting special structures: we prove the formality of nearly Kähler manifolds. A connection between these two results can be found in the fact that both "special holonomy" and "nearly Kähler" naturally generalize compact Kähler manifolds, whose formality is a classical and celebrated theorem by Deligne-Griffiths-Morgan-Sullivan.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源