论文标题
在耦合的稳态双孔隙率孔隙率 - 静止 - 螺旋流体流量模型上
On the solution of the coupled steady-state dual-porosity-Navier-Stokes fluid flow model with the Beavers-Joseph-Saffman interface condition
论文作者
论文摘要
在这项工作中,我们提出了一种新的分析策略,以建立对稳态稳态双孔隙率 - 尼维尔 - 长孔流体流体流体流体模型的先验估计,并具有海狸 - 约瑟夫·塞夫曼界面条件。我们提出的方法的最优点是,先验估计和存在结果独立于小数据和较大的粘度限制。因此,自然而然地获得了弱解决方案的全球唯一性。
In this work, we propose a new analysis strategy to establish an a priori estimate of the weak solutions to the coupled steady-state dual-porosity-Navier-Stokes fluid flow model with the Beavers-Joseph-Saffman interface condition. The most advantage of our proposed method is that the a priori estimate and the existence result are independent of small data and the large viscosity restriction. Therefore the global uniqueness of the weak solution is naturally obtained.