论文标题

在耦合的稳态双孔隙率孔隙率 - 静止 - 螺旋流体流量模型上

On the solution of the coupled steady-state dual-porosity-Navier-Stokes fluid flow model with the Beavers-Joseph-Saffman interface condition

论文作者

Yang, Di, He, Yinnian, Cao, Luling

论文摘要

在这项工作中,我们提出了一种新的分析策略,以建立对稳态稳态双孔隙率 - 尼维尔 - 长孔流体​​流体流体流体模型的先验估计,并具有海狸 - 约瑟夫·塞夫曼界面条件。我们提出的方法的最优点是,先验估计和存在结果独立于小数据和较大的粘度限制。因此,自然而然地获得了弱解决方案的全球唯一性。

In this work, we propose a new analysis strategy to establish an a priori estimate of the weak solutions to the coupled steady-state dual-porosity-Navier-Stokes fluid flow model with the Beavers-Joseph-Saffman interface condition. The most advantage of our proposed method is that the a priori estimate and the existence result are independent of small data and the large viscosity restriction. Therefore the global uniqueness of the weak solution is naturally obtained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源