论文标题

线性延迟微分方程的稳定性和振荡

Stability and oscillation of linear delay differential equations

论文作者

Stavroulakis, John Ioannis, Braverman, Elena

论文摘要

稳定性和延迟微分方程的振荡之间存在密切的联系。对于一阶方程$$ x^{\ prime}(t)+c(t)+c(t)x(τ(t))= 0,~~ t \ geq 0,$ c $ $ c $在任何标志上都可以在任何标志上集成,$τ(t)\ leq t $是lebesgue,lebesgue是lebesgue,lebesgue,lebesgue,$ \ \ fim_ flem_ fery $ \ \ fery we \ right \ right \ fery we \ fery we \ ferty unfty,与振荡和稳定性的速度有关。因此,我们统一了Myshkis和Lillo的经典结果。我们还将$ 3/2- $稳定性标准推广到可衡量参数的情况下,将$ 1+1/e $提高到夏普$ 3/2 $常数。

There is a close connection between stability and oscillation of delay differential equations. For the first-order equation $$ x^{\prime}(t)+c(t)x(τ(t))=0,~~t\geq 0, $$ where $c$ is locally integrable of any sign, $τ(t)\leq t$ is Lebesgue measurable, $\lim_{t\rightarrow\infty}τ(t)=\infty$, we obtain sharp results, relating the speed of oscillation and stability. We thus unify the classical results of Myshkis and Lillo. We also generalise the $3/2-$stability criterion to the case of measurable parameters, improving $1+1/e$ to the sharp $3/2$ constant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源