论文标题

T-GAP:学习跨时间以进行时间知识图完成

T-GAP: Learning to Walk across Time for Temporal Knowledge Graph Completion

论文作者

Jung, Jaehun, Jung, Jinhong, Kang, U

论文摘要

时间知识图(TKG)固有地反映了现实世界知识的短暂性,而不是静态知识图。自然,自动TKG完成为更现实的关系推理带来了许多研究兴趣。但是,大多数用于TKG完成的现有Mod-els扩展了静态KG嵌入,从而使TKG结构完全利用了TKG结构,因此缺乏1)对已经存在于查询的LO-CAL社区的时间相关事件的帐户,以及2)基于路径的推理,可促进多啤酒花推理和更好的解释能力。在本文中,我们提出了T-GAP,这是TKG完成的新型模型,该模型最大程度地利用了其编码器和解码器中的时间信息和图形结构。 T-GAP通过重点关注每个事件和查询时间tamp之间的时间位移来编码TKG的特定查询特异性子结构,并通过图形通过图表传播注意力来执行基于路径的推断。我们的经验实验表明,T-GAP不仅可以针对最先进的基准实现出色的性能,而且还可以胜任地概括到具有看不见的时间戳的查询。通过广泛的定性分析,我们还表明,T-GAP享有透明的解释性,并在其推理过程中遵循人类的直觉。

Temporal knowledge graphs (TKGs) inherently reflect the transient nature of real-world knowledge, as opposed to static knowledge graphs. Naturally, automatic TKG completion has drawn much research interests for a more realistic modeling of relational reasoning. However, most of the existing mod-els for TKG completion extend static KG embeddings that donot fully exploit TKG structure, thus lacking in 1) account-ing for temporally relevant events already residing in the lo-cal neighborhood of a query, and 2) path-based inference that facilitates multi-hop reasoning and better interpretability. In this paper, we propose T-GAP, a novel model for TKG completion that maximally utilizes both temporal information and graph structure in its encoder and decoder. T-GAP encodes query-specific substructure of TKG by focusing on the temporal displacement between each event and the query times-tamp, and performs path-based inference by propagating attention through the graph. Our empirical experiments demonstrate that T-GAP not only achieves superior performance against state-of-the-art baselines, but also competently generalizes to queries with unseen timestamps. Through extensive qualitative analyses, we also show that T-GAP enjoys from transparent interpretability, and follows human intuition in its reasoning process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源