论文标题
汉密尔顿 - 雅各比方程的度量熵,均匀方向凸汉密尔顿
Metric entropy for Hamilton-Jacobi equation with uniformly directionally convex Hamiltonian
论文作者
论文摘要
本文首先旨在研究Hamilton-Jacobi方程的粘度解决方案的BV型规律性\ [ u_t(t,x)+h \ big(d_ {x} u(t,x)\ big) $ h \ in \ mathcal {c}^{1}(\ mathbb {r}^d)$。更确切地说,我们在向后特性的斜率上建立了BV限制$ dh(u(t,\ cdot))$,从正时$ t> 0 $开始。依靠BV绑定,我们在$ {\ bf w}^{1,1} _ {\ Mathrm {loc}}}(\ Mathbb {r}^d)$中量化了公制熵lip} \ big(\ mathbb {r}^d \ big)$,相应的解决方案$ s_tu_0 $。最后,构建了一个反示例,以表明$ d_xu(t,\ cdot)$和$ dh(d_xu(t,\ cdot))$都无法在$ bv _ {\ mathrm {loc}} $中,对于一般的convex和cocive $ h \ in \ in \ mathcal $ n \ mathcal {c} c}^2(c}^2(c)
The present paper first aims to study the BV-type regularity for viscosity solutions of the Hamilton-Jacobi equation \[ u_t(t,x)+H\big(D_{x} u(t,x)\big)~=~0\qquad\forall (t,x)\in ]0,\infty[\times\mathbb{R}^d \] with a coercive and uniformly directionally convex Hamiltonian $H\in\mathcal{C}^{1}(\mathbb{R}^d)$. More precisely, we establish a BV bound on the slope of backward characteristics $DH(u(t,\cdot))$ starting at a positive time $t>0$. Relying on the BV bound, we quantify the metric entropy in ${\bf W}^{1,1}_{\mathrm{loc}}(\mathbb{R}^d)$ for the map $S_t$ that associates to every given initial data $u_0\in{\bf Lip}\big(\mathbb{R}^d\big)$, the corresponding solution $S_tu_0$. Finally, a counter example is constructed to show that both $D_xu(t,\cdot)$ and $DH(D_xu(t,\cdot))$ fail to be in $BV_{\mathrm{loc}}$ for a general strictly convex and coercive $H\in\mathcal{C}^2(\mathbb{R}^d)$.