论文标题
位置依赖性量子重力背景场中的质量
Position-dependent mass in strong quantum gravitational background fields
论文作者
论文摘要
最近,我们提出了一组非交通空间,该空间描述了普朗克量表的量子重力[J.物理。答:数学。理论。 53,115303(2020)]。我们发现的有趣的重要结果是,普遍的不确定性原理诱导了最大可测量的量子重力长度。该测量表明,在这种尺度上显示出强量子重力效应,并预测了能量低的重力颗粒的检测。在本文中,为了证明这一预测,我们在这个空间中研究了依赖位置质量(PDM)的粒子的动力学,被困在无限正方形中。我们表明,通过增加量子重力效应,粒子的PDM增加并诱导量子能级的变形。这些变形更加明显,因为一个变形增加了量子水平,粒子以低能量和高概率密度从一个状态跳到另一种状态。
More recently, we have proposed a set of noncommutative space that describes the quantum gravity at the Planck scale [J. Phys. A: Math. Theor. 53, 115303 (2020)]. The interesting significant result we found is that, the generalized uncertainty principle induces a maximal measurable length of quantum gravity. This measurement revealed strong quantum gravitational effects at this scale and predicted a detection of gravity particles with low energies. In the present paper, to make evidence this prediction, we study in this space, the dynamics of a particle with position-dependent mass (PDM) trapped in an infinite square well. We show that, by increasing the quantum gravitational effect, the PDM of the particle increases and induces deformations of the quantum energy levels. These deformations are more pronounced as one increases the quantum levels allowing, the particle to jump from one state to another with low energies and with high probability densities.