论文标题

神经网络快速分类生物图像,使用其随机孔子对重要性的特征为智能显微镜提供动力

Neural network fast-classifies biological images using features selected after their random-forests-importance to power smart microscopy

论文作者

Balluet, Maël, Sizaire, Florian, Habouz, Youssef El, Walter, Thomas, Pont, Jérémy, Giroux, Baptiste, Bouchareb, Otmane, Tramier, Marc, Pécréaux, Jacques

论文摘要

如今,人工智能是在获得后分析期间用于光学显微镜中的细胞检测和分类。现在,显微镜是完全自动化的,下一个预期是聪明的,可以根据图像做出采集决策。它要求即时分析它们。由于成本和时间准备样本并将数据集注释专家,生物学进一步对减少数据集进行了培训。我们在这里提出了实时图像处理,通过平衡准确的检测和执行性能,符合这些规格。我们使用通用的高维特征提取器表征了图像。然后,我们使用机器学习对图像进行分类,以了解每个功能在决策和执行时间中的贡献。我们发现,非线性分类器随机森林的表现优于Fisher的线性判别。更重要的是,可以排除最歧视和最耗时的功能,而没有任何准确性的明显损失,从而在执行时间上带来了可观的增长。它表明特征组冗余可能与观察到的细胞的生物学有关。我们提供了一种选择快速和判别功能的方法。在我们的测定中,一个79.6美元的PM $ 2.4%的细胞准确分类为68.7 $ \ pm $ 3.5毫秒(平均$ \ pm $ SD,5倍的交叉验证,在10个botstrap重复序列中嵌套了5倍),对应于每秒14个单元格,使用12个特征组的组成组成的单元组成的8个单元组,将其用于消费型组和机器市场。有趣的是,一个简单的神经网络提供了类似的性能,为更快的训练和分类铺平了道路,并在通用图形处理单元上使用并行执行。最后,该策略也可用于深层神经网络,为优化这些智能显微镜的算法铺平了道路。

Artificial intelligence is nowadays used for cell detection and classification in optical microscopy, during post-acquisition analysis. The microscopes are now fully automated and next expected to be smart, to make acquisition decisions based on the images. It calls for analysing them on the fly. Biology further imposes training on a reduced dataset due to cost and time to prepare the samples and have the datasets annotated by experts. We propose here a real-time image processing, compliant with these specifications by balancing accurate detection and execution performance. We characterised the images using a generic, high-dimensional feature extractor. We then classified the images using machine learning for the sake of understanding the contribution of each feature in decision and execution time. We found that the non-linear-classifier random forests outperformed Fisher's linear discriminant. More importantly, the most discriminant and time-consuming features could be excluded without any significant loss in accuracy, offering a substantial gain in execution time. It suggests a feature-group redundancy likely related to the biology of the observed cells. We offer a method to select fast and discriminant features. In our assay, a 79.6 $\pm$ 2.4 % accurate classification of a cell took 68.7 $\pm$ 3.5 ms (mean $\pm$ SD, 5-fold cross-validation nested in 10 bootstrap repeats), corresponding to 14 cells per second, dispatched into 8 phases of the cell cycle using 12 feature-groups and operating a consumer market ARM-based embedded system. Interestingly, a simple neural network offered similar performances paving the way to faster training and classification, using parallel execution on a general-purpose graphic processing unit. Finally, this strategy is also usable for deep neural networks paving the way to optimising these algorithms for smart microscopy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源