论文标题

LiveMAP:汽车边缘计算中的实时动态图

LiveMap: Real-Time Dynamic Map in Automotive Edge Computing

论文作者

Liu, Qiang, Han, Tao, Jiang, Xie, Kim, BaekGyu

论文摘要

自主驾驶需要各种视线传感器来感知周围环境,这些环境可能会在不同的环境中受到损害,例如视觉遮挡和极端天气。为了提高驾驶安全性,我们在汽车边缘计算网络中的连接车辆中探索以无线共享感知信息。但是,在动态的网络条件和不同的计算工作负载下,实时共享大量的感知数据是具有挑战性的。在本文中,我们提出了一个实时动态地图LiveMap,它可以通过次秒中连接的车辆的数据来检测,匹配和跟踪道路上的对象。我们开发了LiveMAP的数据平面,该数据平面有效地处理了对象检测,投影,特征提取,对象匹配的单个车辆数据,并有效地将来自多个车辆的对象与对象组合整合在一起。我们设计了LiveMAP的控制平面,该控制平面允许自适应卸载车辆计算,并开发智能车辆调度和卸载算法,以减少基于深入强化学习(DRL)技术的车辆的卸载潜伏期。我们在小型测试台上实施LiveMap,并开发大型网络模拟器。我们通过实验和模拟评估了LiveMAP的性能,结果表明,与基线溶液相比,LiveMAP降低了平均潜伏期的34.1%。

Autonomous driving needs various line-of-sight sensors to perceive surroundings that could be impaired under diverse environment uncertainties such as visual occlusion and extreme weather. To improve driving safety, we explore to wirelessly share perception information among connected vehicles within automotive edge computing networks. Sharing massive perception data in real time, however, is challenging under dynamic networking conditions and varying computation workloads. In this paper, we propose LiveMap, a real-time dynamic map, that detects, matches, and tracks objects on the road with crowdsourcing data from connected vehicles in sub-second. We develop the data plane of LiveMap that efficiently processes individual vehicle data with object detection, projection, feature extraction, object matching, and effectively integrates objects from multiple vehicles with object combination. We design the control plane of LiveMap that allows adaptive offloading of vehicle computations, and develop an intelligent vehicle scheduling and offloading algorithm to reduce the offloading latency of vehicles based on deep reinforcement learning (DRL) techniques. We implement LiveMap on a small-scale testbed and develop a large-scale network simulator. We evaluate the performance of LiveMap with both experiments and simulations, and the results show LiveMap reduces 34.1% average latency than the baseline solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源