论文标题

哪个英雄要选?学习通过神经网络和树木搜索在MOBA游戏中起草

Which Heroes to Pick? Learning to Draft in MOBA Games with Neural Networks and Tree Search

论文作者

Chen, Sheng, Zhu, Menghui, Ye, Deheng, Zhang, Weinan, Fu, Qiang, Yang, Wei

论文摘要

英雄制图在MOBA游戏中至关重要,因为它可以建立双方的团队并直接影响比赛结果。最新的起草方法无法考虑:1)在扩大英雄池时起草效率; 2)MOBA 5V5比赛系列的多轮本质,即两支球队的比赛最佳和同一英雄只能在整个系列赛中起草一次。在本文中,我们将起草过程作为多轮组合游戏制定,并提出了一种基于神经网络和蒙特卡洛树搜索的新颖起草算法,名为Juewudraft。具体而言,我们设计了一种长期价值估计机制来处理最佳N起草情况。作为目前最受欢迎的MOBA游戏之一Kings纪念Kings,作为一个跑步案例,我们证明了Juewudraft的实用性和有效性,与最先进的起草方法相比。

Hero drafting is essential in MOBA game playing as it builds the team of each side and directly affects the match outcome. State-of-the-art drafting methods fail to consider: 1) drafting efficiency when the hero pool is expanded; 2) the multi-round nature of a MOBA 5v5 match series, i.e., two teams play best-of-N and the same hero is only allowed to be drafted once throughout the series. In this paper, we formulate the drafting process as a multi-round combinatorial game and propose a novel drafting algorithm based on neural networks and Monte-Carlo tree search, named JueWuDraft. Specifically, we design a long-term value estimation mechanism to handle the best-of-N drafting case. Taking Honor of Kings, one of the most popular MOBA games at present, as a running case, we demonstrate the practicality and effectiveness of JueWuDraft when compared to state-of-the-art drafting methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源