论文标题

学习动态人头的学习成分辐射场

Learning Compositional Radiance Fields of Dynamic Human Heads

论文作者

Wang, Ziyan, Bagautdinov, Timur, Lombardi, Stephen, Simon, Tomas, Saragih, Jason, Hodgins, Jessica, Zollhöfer, Michael

论文摘要

动态人类的感性渲染是电视系统,虚拟购物,合成数据生成等的重要能力。最近,结合了计算机图形和机器学习技术的神经渲染方法,创造了人类和对象的高保真模型。这些方法中的一些没有产生具有高吸收性的可驱动人类模型(神经体积)的结果,而其他方法的渲染时间极长(NERF)。我们提出了一种新颖的组成3D表示,该表示结合了以前的最佳方法,以产生更高分辨率和更快的结果。我们的表示通过将动画代码的粗3D结构感知的网格与连续学习的场景功能相结合,将离散和连续体积表示之间的差距桥接起来,该网格将每个位置及其相应的局部动画代码映射到其依赖于视图的发射辐射和局部体积密度。使用可区分的体积渲染来计算人类头和上半身的照片真实的新颖观点,并仅使用2D监督端到端训练我们的新颖表示。此外,我们表明,学到的动态辐射字段可用于根据全局动画代码综合新颖的表达式。我们的方法取得了最新的结果,可以综合动态人头和上半身的新型观点。

Photorealistic rendering of dynamic humans is an important ability for telepresence systems, virtual shopping, synthetic data generation, and more. Recently, neural rendering methods, which combine techniques from computer graphics and machine learning, have created high-fidelity models of humans and objects. Some of these methods do not produce results with high-enough fidelity for driveable human models (Neural Volumes) whereas others have extremely long rendering times (NeRF). We propose a novel compositional 3D representation that combines the best of previous methods to produce both higher-resolution and faster results. Our representation bridges the gap between discrete and continuous volumetric representations by combining a coarse 3D-structure-aware grid of animation codes with a continuous learned scene function that maps every position and its corresponding local animation code to its view-dependent emitted radiance and local volume density. Differentiable volume rendering is employed to compute photo-realistic novel views of the human head and upper body as well as to train our novel representation end-to-end using only 2D supervision. In addition, we show that the learned dynamic radiance field can be used to synthesize novel unseen expressions based on a global animation code. Our approach achieves state-of-the-art results for synthesizing novel views of dynamic human heads and the upper body.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源