论文标题
Nanograv 12。5年数据集:监视星际散射延迟
The NANOGrav 12.5-Year Data Set: Monitoring Interstellar Scattering Delays
论文作者
论文摘要
我们提取纳米格拉夫无线电脉冲星定时计划观察到的脉冲星的星际闪烁参数。使用拉伸算法的闪烁时间尺度,闪烁带宽和相应的散射延迟,使用了每个脉冲星的观察时期的动态光谱,以获取频率依赖性尺度的相应散射延迟。我们能够测量1500 MHz的28个脉冲星的闪烁带宽,在820 MHz时测量15个脉冲星。我们检查了17个Pulsars的缩放行为,并查找从$ -0.7 $到$ -3.6 $的幂律指数,尽管由于较低频率下的频率分辨率不足,因此可能会偏差。我们还能够在1500 MHz的六个脉冲星和820 MHz的七个脉冲星时测量六个脉冲星的闪烁时间标准。我们的散射延迟测量与大多数脉冲星的电子密度模型预测之间存在公平的一致性。假设各向同性散射和脉冲星和地球之间的一半散射屏幕,我们得出了基于星际散射的横向速度。我们还估计散射筛的位置,假设适当的运动和星际散射衍生的横向速度相等。我们发现散射延迟的变化与色散度量或通量密度的变化之间没有相关性。对于大多数可测量散射延迟的脉冲星,我们发现给定时期的到达不确定性的时间大于我们的散射延迟测量值,这表明当前在我们的总体噪声预算中可变散射延迟是亚限制性的,但对于实现NS的十分或更少的NS或更少的精度很重要。
We extract interstellar scintillation parameters for pulsars observed by the NANOGrav radio pulsar timing program. Dynamic spectra for the observing epochs of each pulsar were used to obtain estimates of scintillation timescales, scintillation bandwidths, and the corresponding scattering delays using a stretching algorithm to account for frequency-dependent scaling. We were able to measure scintillation bandwidths for 28 pulsars at 1500 MHz and 15 pulsars at 820 MHz. We examine scaling behavior for 17 pulsars and find power-law indices ranging from $-0.7$ to $-3.6$, though these may be biased shallow due to insufficient frequency resolution at lower frequencies. We were also able to measure scintillation timescales for six pulsars at 1500 MHz and seven pulsars at 820 MHz. There is fair agreement between our scattering delay measurements and electron-density model predictions for most pulsars. We derive interstellar scattering-based transverse velocities assuming isotropic scattering and a scattering screen halfway between the pulsar and earth. We also estimate the location of the scattering screens assuming proper motion and interstellar scattering-derived transverse velocities are equal. We find no correlations between variations in scattering delay and either variations in dispersion measure or flux density. For most pulsars for which scattering delays were measurable, we find that time of arrival uncertainties for a given epoch are larger than our scattering delay measurements, indicating that variable scattering delays are currently subdominant in our overall noise budget but are important for achieving precisions of tens of ns or less.