论文标题

普遍的高斯范围,用于离散卷积能力

Generalized gaussian bounds for discrete convolution powers

论文作者

Coulombel, Jean-François, Faye, Grégory

论文摘要

我们证明了一个统一的普遍高斯在一个空间维度上的离散卷积操作员的力量。我们的界限是在卷积操作员系数的傅立叶变换为三角合理函数的假设下得出的,该函数概括了以前的结果,这些结果限于三角学多项式。我们还允许傅立叶变换的模量在一段时间内有限的许多点达到其最大值。

We prove a uniform generalized gaussian bound for the powers of a discrete convolution operator in one space dimension. Our bound is derived under the assumption that the Fourier transform of the coefficients of the convolution operator is a trigonometric rational function, which generalizes previous results that were restricted to trigonometric polynomials. We also allow the modulus of the Fourier transform to attain its maximum at finitely many points over a period.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源