论文标题

Arcsin真实标量动力学中的kinklike结构

Kinklike structures in an arcsin real scalar dynamics

论文作者

Granado, Diego R., Lima, Elisama E. M.

论文摘要

在本文中,我们在真实的标量理论中分析了类似扭结的分析解决方案,其ARCSIN动力学灵感来自Kruglov(2015)中呈现的Arcsin电动力学。该分析是通过一阶形式主义完成的。这种形式主义提供了一个框架,可以通过保持理论的线性稳定性来简化运动方程。在这项工作中,实施变形过程是为了在具有广义动态的系统中找到精确的解决方案。除论文外,我们还探讨了如何在Arcsin动力学中实施一阶形式主义,以及这种术语如何影响类似扭结的解决方案。作为论文结果的一部分,我们表明类似扭结的溶液与标准标量动力学理论中获得的溶液相似。我们还表明,控制模型的非线性的额外参数在能量密度和稳定电位中起着至关重要的作用。这些数量根据此参数有所不同。这里的目标是显示如何在此Arcsin方案中实现一阶框架,并提出可以通过一阶框架和变形方法找到的分析扭结解决方案。

In this paper, we analyze kink-like analytical solutions in a real scalar theory with an arcsin dynamics inspired by the arcsin electrodynamics presented in Kruglov (2015). This analysis is done by means of the first-order formalism. This formalism provides a framework where the equations of motion can be simplified by preserving the linear stability of the theory. In this work, the deformation procedure is implemented with the aim of finding exact solutions in systems with generalized dynamics. Along with the paper, we explore how the first-order formalism is implemented in the arcsin kinetics and how such a term influences the kink-like solutions. As a part of the result of our paper, we show that the kink-like solutions are similar to the ones obtained in the standard scalar kinetic theory. We also show that the extra parameter, that controls the non-linearities of the model, plays an essential role in the energy densities and stability potentials. These quantities vary according to this parameter. The goals here are to show how the first-order framework is implemented in this arcsin scenario and to present the analytical kink-like solutions that can be found by means of the first-order framework and deformation method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源