论文标题
ho红瓦利亚 - 利法兹框架中的重力规程矢量相互作用
Gravitational-gauge vector interaction in the Hořava-Lifshitz framework
论文作者
论文摘要
提出了描述重力的各向异性模型 - 所有能量尺度的矢量规耦合。起点是受几何限制的4+1尺寸的非预测ho树 - lifshitz重力理论。可误算的参数需要在潜在的潜力中与$ z = 4 $空间衍生物的所有可能的相互作用:几何张量场:Riemann和Weyl Tensors。后者是在4+1维公式上所必需的。降低至3+1维的尺寸会导致{foliation-reservoring diffemormormings}(fdiff)和$ u(1)$对称组的模型不变。 {动力学共形}(kc)点($λ= 1/3 $)的理论降低,传播了爱因斯坦 - 马克斯韦理论的相同范围。此外,在低能量下,在IR点$α= 0 $,$β= 1 $上,其场方程正是Einstein-Maxwell-在特定规格条件下。 Minkowski基态是稳定的,只要满足耦合参数的几个限制,它们是明确获得的。获得了物理自由度的量子传播器,并且在对第一类和第二类的分析后,如果满足上述对耦合参数的限制,则证明了通过功率计数的可授权性。
An anisotropic model describing gravity--vector gauge coupling at all energy scales is presented. The starting point is the 4+1 dimensional non--projectable Hořava--Lifshitz gravity theory subject to a geometrical restriction. Renormalizability arguments require all possible interactions in the potential up to terms with $z=4$ spatial derivatives on the geometrical tensor fields: the Riemann and Weyl tensors. The latter being necessary on a 4+1 dimensional formulation. The dimensional reduction to 3+1 dimensions give rise to a model invariant under {foliation--preserving diffeomorphisms} (FDiff) and $U(1)$ symmetry groups. The reduced theory on the {kinetic conformal} (KC) point ($λ=1/3$), propagates the same spectrum of the Einstein--Maxwell theory. Moreover, at low energies, on the IR point $α=0$, $β=1$, its field equations are exactly the Einstein--Maxwell ones in a particular gauge condition. The Minkowski ground state is stable provided several restrictions on the coupling parameters are satisfied, they are explicitly obtained. The quantum propagators of the physical degrees of freedom are obtained and after an analysis of the first and second class constraints the renormalizability by power counting is proved, provided that the aforementioned restrictions on the coupling parameters are satisfied.