论文标题

稳定和安全保证的模仿学习

Imitation Learning with Stability and Safety Guarantees

论文作者

Yin, He, Seiler, Peter, Jin, Ming, Arcak, Murat

论文摘要

提出了一种通过模仿学习(IL)来学习具有稳定性和安全性的神经网络(NN)控制器的方法。通过将Lyapunov理论与局部二次约束结合以结合NN中的非线性激活函数,通过将Lyapunov理论与NN局部二次限制合并,来得出了与NN控制器的线性时间不变植物动力学的凸稳定性和安全条件。这些条件纳入IL过程,该过程可最大程度地减少IL损失,并同时使与NN控制器相关的吸引区域的体积最大化。提出了一种基于乘数算法的交替方向方法来解决IL问题。该方法在倒置系统,飞机纵向动力学和车辆横向动力学上进行了说明。

A method is presented to learn neural network (NN) controllers with stability and safety guarantees through imitation learning (IL). Convex stability and safety conditions are derived for linear time-invariant plant dynamics with NN controllers by merging Lyapunov theory with local quadratic constraints to bound the nonlinear activation functions in the NN. These conditions are incorporated in the IL process, which minimizes the IL loss, and maximizes the volume of the region of attraction associated with the NN controller simultaneously. An alternating direction method of multipliers based algorithm is proposed to solve the IL problem. The method is illustrated on an inverted pendulum system, aircraft longitudinal dynamics, and vehicle lateral dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源