论文标题

深度学习ATR中的数据增强的稀疏信号模型

Sparse Signal Models for Data Augmentation in Deep Learning ATR

论文作者

Agarwal, Tushar, Sugavanam, Nithin, Ertin, Emre

论文摘要

自动目标识别(ATR)算法使用每个类可用的一组训练图像,将给定的合成孔径(SAR)图像分类为已知的目标类之一。最近,如果有丰富的培训数据可用,在课程中均匀地采样及其姿势,学习方法已证明可以实现最新的分类精度。在本文中,我们考虑了ATR的任务,其中一组培训图像有限。我们提出了一种数据增强方法,以结合域知识并提高数据密集型学习算法的概括能力,例如卷积神经网络(CNN)。提出的数据增强方法采用有限的持久性稀疏建模方法,利用广角合成孔径雷达(SAR)图像的普遍观察到的特征。具体而言,我们利用空间结构域中的散射中心的稀疏性以及方位角域中散射系数的平稳结构,以解决过度分配模型拟合的不足问题。使用此估计的模型,我们在给定数据中没有可用的姿势和子像素翻译以增强CNN的培训数据合成新图像。实验结果表明,对于训练数据饥饿的区域,提出的方法为ATR算法的泛化性能带来了显着增长。

Automatic Target Recognition (ATR) algorithms classify a given Synthetic Aperture Radar (SAR) image into one of the known target classes using a set of training images available for each class. Recently, learning methods have shown to achieve state-of-the-art classification accuracy if abundant training data is available, sampled uniformly over the classes, and their poses. In this paper, we consider the task of ATR with a limited set of training images. We propose a data augmentation approach to incorporate domain knowledge and improve the generalization power of a data-intensive learning algorithm, such as a Convolutional neural network (CNN). The proposed data augmentation method employs a limited persistence sparse modeling approach, capitalizing on commonly observed characteristics of wide-angle synthetic aperture radar (SAR) imagery. Specifically, we exploit the sparsity of the scattering centers in the spatial domain and the smoothly-varying structure of the scattering coefficients in the azimuthal domain to solve the ill-posed problem of over-parametrized model fitting. Using this estimated model, we synthesize new images at poses and sub-pixel translations not available in the given data to augment CNN's training data. The experimental results show that for the training data starved region, the proposed method provides a significant gain in the resulting ATR algorithm's generalization performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源