论文标题

Decor-Gan:3D形状细节通过有条件细化

DECOR-GAN: 3D Shape Detailization by Conditional Refinement

论文作者

Chen, Zhiqin, Kim, Vladimir G., Fisher, Matthew, Aigerman, Noam, Zhang, Hao, Chaudhuri, Siddhartha

论文摘要

我们引入了一个深层生成网络,用于3D形状细节,类似于风格化,样式是几何细节。我们通过将问题视为几何细节转移的问题来解决从一小部分示例中创建大量高分辨率和详细的3D几何形状的挑战。鉴于低分辨率的粗素形状,我们的网络通过体素升采样将其完善成富含几何细节的高分辨率形状。输出形状保留了输入的整体结构(或内容),而其详细信息的生成则以与详细示例相对应的输入“样式代码”为条件。我们通过有条件细化的3D细节由生成的对抗网络(Coincin coin-Gen)实现。该网络利用3D CNN发电机来提高粗略体素和3D Patchgan判别器来强制生成模型的本地贴片,以类似于训练详细的形状中的那些。在测试过程中,将样式代码馈入发电机以调节改进。我们证明我们的方法可以将粗糙的形状完善成各种具有不同样式的详细形状。生成的结果是根据内容保存,合理性和多样性评估的。进行全面的消融研究以验证我们的网络设计。代码可从https://github.com/czq142857/decor-gan获得。

We introduce a deep generative network for 3D shape detailization, akin to stylization with the style being geometric details. We address the challenge of creating large varieties of high-resolution and detailed 3D geometry from a small set of exemplars by treating the problem as that of geometric detail transfer. Given a low-resolution coarse voxel shape, our network refines it, via voxel upsampling, into a higher-resolution shape enriched with geometric details. The output shape preserves the overall structure (or content) of the input, while its detail generation is conditioned on an input "style code" corresponding to a detailed exemplar. Our 3D detailization via conditional refinement is realized by a generative adversarial network, coined DECOR-GAN. The network utilizes a 3D CNN generator for upsampling coarse voxels and a 3D PatchGAN discriminator to enforce local patches of the generated model to be similar to those in the training detailed shapes. During testing, a style code is fed into the generator to condition the refinement. We demonstrate that our method can refine a coarse shape into a variety of detailed shapes with different styles. The generated results are evaluated in terms of content preservation, plausibility, and diversity. Comprehensive ablation studies are conducted to validate our network designs. Code is available at https://github.com/czq142857/DECOR-GAN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源