论文标题
彩色琼斯多项式和Abelianized lefschetz编号
Colored Jones polynomials and abelianized Lefschetz numbers
论文作者
论文摘要
我们表明,与编织物在配置空间上的作用相关联的编织式jones多项式的彩色琼斯多项式家族。总和超过了配置点的数量。然后,我们用Poincare来解释这一总和 - 同源性类别之间的lefschetz双重交集配对。
We show that the family of colored Jones polynomials of the closure of a braid compute weighted sums of abelianized Lefschetz numbers associated with the action of the braid on configuration spaces. The sum is over the number of configuration points. Then we interpret this sum in terms of Poincare--Lefschetz duality intersection pairing between homology classes.