论文标题

体积和宏观标量曲率

Volume and macroscopic scalar curvature

论文作者

Braun, Sabine, Sauer, Roman

论文摘要

我们证明了三个猜想的宏观表亲:1)在存在较低的标态曲率结合的情况下,riemannian流形的简单体积的一个猜想结合,2)猜想,即在理性上基本的歧管的猜想不承认积极标度曲率的指标,3)$ l^2 $ -BETERIAR的构成量的标量,3)较低的标态曲率结合。宏观堂兄是通过在通用封面中的$ 1 $ balls卷上限制的较低标量曲率来获得的说法。

We prove the macroscopic cousins of three conjectures: 1) a conjectural bound of the simplicial volume of a Riemannian manifold in the presence of a lower scalar curvature bound, 2) the conjecture that rationally essential manifolds do not admit metrics of positive scalar curvature, 3) a conjectural bound of $L^2$-Betti numbers of aspherical Riemannian manifolds in the presence of a lower scalar curvature bound. The macroscopic cousin is the statement one obtains by replacing a lower scalar curvature bound by an upper bound on the volumes of $1$-balls in the universal cover.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源