论文标题

使用可穿戴传感器的个性化步骤计数:域调整LSTM网络方法

Personalized Step Counting Using Wearable Sensors: A Domain Adapted LSTM Network Approach

论文作者

Pillai, Arvind, Lea, Halsey, Khan, Faisal, Dennis, Glynn

论文摘要

活动监测器被广泛用于衡量各种体育活动(PA),以表明移动性,健身和一般健康状况。同样,对纵向计数中纵向趋势的实时监测具有巨大的临床潜力,这是对疾病与日常活动相关的个性化衡量指标。但是,供应商,身体位置和个体步态差异的步骤计数准确性不一致限制了临床实用性。可以利用PA监测器内部的三轴加速度计以提高设备和个人之间的步骤计数精度。在这项研究中,我们假设:(1)可以对原始的三轴传感器数据进行建模以创建可靠,准确的步骤计数,并且(2)可以使用很少的新数据有效地将广义的步骤计数模型有效地适应每个唯一的步态模式。首先,开源原始传感器数据用于构建长期内存(LSTM)深神经网络以模拟步骤计数。然后,我们使用不同的设备和不同的主题生成了一个新的,完全独立的数据集。最后,少量特定于主题的数据是针对生产具有较高个性化步骤计数精度的个性化模型的域。这些结果表明,使用大型免费数据集训练的模型可以适用于很少有历史数据集的患者人群。

Activity monitors are widely used to measure various physical activities (PA) as an indicator of mobility, fitness and general health. Similarly, real-time monitoring of longitudinal trends in step count has significant clinical potential as a personalized measure of disease related changes in daily activity. However, inconsistent step count accuracy across vendors, body locations, and individual gait differences limits clinical utility. The tri-axial accelerometer inside PA monitors can be exploited to improve step count accuracy across devices and individuals. In this study, we hypothesize: (1) raw tri-axial sensor data can be modeled to create reliable and accurate step count, and (2) a generalized step count model can then be efficiently adapted to each unique gait pattern using very little new data. Firstly, open-source raw sensor data was used to construct a long short term memory (LSTM) deep neural network to model step count. Then we generated a new, fully independent data set using a different device and different subjects. Finally, a small amount of subject-specific data was domain adapted to produce personalized models with high individualized step count accuracy. These results suggest models trained using large freely available datasets can be adapted to patient populations where large historical data sets are rare.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源