论文标题
定量分数Helly和$(P,Q)$ - 定理
Quantitative Fractional Helly and $(p,q)$-Theorems
论文作者
论文摘要
我们考虑了Helly-Type问题的定量版本,也就是说,我们没有在交叉路口找到一个点,而是绑定了交叉路口的体积。我们的第一个主要几何结果是Katchalski和Liu的分数Helly定理的定量版本,第二个是$(P,Q)$ - Alon和Kleitman定理的定量版本。
We consider quantitative versions of Helly-type questions, that is, instead of finding a point in the intersection, we bound the volume of the intersection. Our first main geometric result is a quantitative version of the Fractional Helly Theorem of Katchalski and Liu, the second one is a quantitative version of the $(p,q)$-Theorem of Alon and Kleitman.