论文标题

使用匿名的空间邻接信息,使用时空深度学习来预测乘车系统中的需求和供求需求差距

Using Spatio-temporal Deep Learning for Forecasting Demand and Supply-demand Gap in Ride-hailing System with Anonymised Spatial Adjacency Information

论文作者

Rahman, M. H., Rifaat, S. M.

论文摘要

为了减少乘客的等待时间和驾驶员搜索摩擦,乘车公司需要准确预测时空需求和供求需求差距。但是,由于乘车系统中与需求和供求需求差距有关的时空依赖性,对需求和供应需求差距进行准确的预测是一项艰巨的任务。此外,由于机密性和隐私问题,有时通过删除区域的空间邻接信息来释放乘车数据,这阻碍了对时空依赖性的检测。为此,本文提出了一种新型时空的深度学习体系结构,以预测带有匿名空间邻接信息的乘车系统中的需求和供求需求差距,该系统将具有特征的重要性层与时空深度学习架构集成,其中包含一维神经网络(cnnnnnnnnnnnnnnnnnnnnnnnnnnn and in nerent in rectrents)独立(cnnn)独立性(cnnnnnnnnnnnnnnnnnnnnnnnnnnnne intrentiment)。通过DIDI CHUXING的现实数据集对开发的建筑进行了测试,这表明我们的模型基于提议的体系结构可以胜过传统的时间序列模型(例如Arima)和机器学习模型(例如,梯度增强机器,分布式随机森林,分布式森林,lineal lineal,广义的线性模型,人工神经网络)。此外,特征重要性层通过揭示预测中使用的输入特征的贡献来提供模型的解释。

To reduce passenger waiting time and driver search friction, ride-hailing companies need to accurately forecast spatio-temporal demand and supply-demand gap. However, due to spatio-temporal dependencies pertaining to demand and supply-demand gap in a ride-hailing system, making accurate forecasts for both demand and supply-demand gap is a difficult task. Furthermore, due to confidentiality and privacy issues, ride-hailing data are sometimes released to the researchers by removing spatial adjacency information of the zones, which hinders the detection of spatio-temporal dependencies. To that end, a novel spatio-temporal deep learning architecture is proposed in this paper for forecasting demand and supply-demand gap in a ride-hailing system with anonymized spatial adjacency information, which integrates feature importance layer with a spatio-temporal deep learning architecture containing one-dimensional convolutional neural network (CNN) and zone-distributed independently recurrent neural network (IndRNN). The developed architecture is tested with real-world datasets of Didi Chuxing, which shows that our models based on the proposed architecture can outperform conventional time-series models (e.g., ARIMA) and machine learning models (e.g., gradient boosting machine, distributed random forest, generalized linear model, artificial neural network). Additionally, the feature importance layer provides an interpretation of the model by revealing the contribution of the input features utilized in prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源