论文标题
$μ\ neq 0 $时,关于基达公式的一些评论
Some remarks on Kida's formula when $μ\neq 0$
论文作者
论文摘要
经典伊瓦沙瓦理论中的基达公式与$ p $ extensions of数字字段的iWasawa $λ$ -Invariants相关联。随后,该公式的类似物是针对适当的$μ= 0 $假设建立了Selmer组的Iwasawa $λ$ invariants。在本文中,我们给出了一个概念(但猜想)的解释,即当$μ\ neq 0 $时,这种公式也应达到。猜想的组件来自所谓的$ \ mathfrak {m} _h(g)$ - 在非共同的伊沃萨理论中的猜想。
The Kida's formula in classical Iwasawa theory relates the Iwasawa $λ$-invariants of $p$-extensions of number fields. Analogue of this formula was subsequently established for the Iwasawa $λ$-invariants of Selmer groups under an appropriate $μ=0$ assumption. In this paper, we give a conceptual (but conjectural) explanation that such a formula should also hold when $μ\neq 0$. The conjectural component comes from the so-called $\mathfrak{M}_H(G)$-conjecture in noncommutative Iwasawa theory.