论文标题

使用高斯工艺回归的植被特性检索的光谱带选择

Spectral band selection for vegetation properties retrieval using Gaussian processes regression

论文作者

Verrelst, Jochem, Rivera, Juan Pablo, Gitelson, Anatoly, Delegido, Jesus, Moreno, José, Camps-Valls, Gustau

论文摘要

使用当前和即将发生的成像光谱仪,需要自动化的频带分析技术,以有效地识别大多数信息频段,以促进对生物物理变量的估计值进行优化的光谱处理。本文基于高斯工艺回归(GPR)引入了自动光谱带分析工具(BAT),用于植被特性的光谱分析。 GPR-BAT过程顺序向后删除给定变量的回归模型中最小的贡献频带,直到仅保留一个频段为止。 GPR-BAT是在免费ARTMO的MLRA(机器学习回归算法)工具箱的框架内实施的,该工具箱致力于将光学遥感图像转换为生物物理产品。 GPR-BAT允许(1)确定将光谱数据与生物物理变量相关的最有用的频段,(2)找到保留优化精确预测的最少频段。这项研究得出的结论是,对于最佳的植被特性映射,严格必需的高光谱数据的选择带选择。

With current and upcoming imaging spectrometers, automated band analysis techniques are needed to enable efficient identification of most informative bands to facilitate optimized processing of spectral data into estimates of biophysical variables. This paper introduces an automated spectral band analysis tool (BAT) based on Gaussian processes regression (GPR) for the spectral analysis of vegetation properties. The GPR-BAT procedure sequentially backwards removes the least contributing band in the regression model for a given variable until only one band is kept. GPR-BAT is implemented within the framework of the free ARTMO's MLRA (machine learning regression algorithms) toolbox, which is dedicated to the transforming of optical remote sensing images into biophysical products. GPR-BAT allows (1) to identify the most informative bands in relating spectral data to a biophysical variable, and (2) to find the least number of bands that preserve optimized accurate predictions. This study concludes that a wise band selection of hyperspectral data is strictly required for optimal vegetation properties mapping.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源