论文标题

罚款:边缘检测快速推理网络

FINED: Fast Inference Network for Edge Detection

论文作者

Wibisono, Jan Kristanto, Hang, Hsueh-Ming

论文摘要

在本文中,我们介绍了轻巧的基于深度学习的边缘检测的设计。深度学习技术可在边缘检测准确性方面有重大提高。但是,典型的神经网络设计具有很高的模型复杂性,可防止其实际使用。相比之下,我们提出了一个快速的推理网络,用于边缘检测(罚款),这是一个用于边缘检测的轻型神经网。通过仔细选择用于边缘检测目的的适当组件,我们可以在边缘检测中实现最新的精度,同时显着降低其复杂性。提高推论速度的另一个关键贡献是引入训练助手概念。额外的子网(培训助手)用于培训,但不用于推理。它可以进一步降低模型的复杂性,但仍保持相同的准确性。我们的实验表明,我们的系统在大约相同的模型(参数)大小上优于所有当前边缘检测器。

In this paper, we address the design of lightweight deep learning-based edge detection. The deep learning technology offers a significant improvement on the edge detection accuracy. However, typical neural network designs have very high model complexity, which prevents it from practical usage. In contrast, we propose a Fast Inference Network for Edge Detection (FINED), which is a lightweight neural net dedicated to edge detection. By carefully choosing proper components for edge detection purpose, we can achieve the state-of-the-art accuracy in edge detection while significantly reducing its complexity. Another key contribution in increasing the inferencing speed is introducing the training helper concept. The extra subnetworks (training helper) are employed in training but not used in inferencing. It can further reduce the model complexity and yet maintain the same level of accuracy. Our experiments show that our systems outperform all the current edge detectors at about the same model (parameter) size.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源