论文标题

在HV-Convex开关组件的某些几何方面

On some geometric aspects of the class of hv-convex switching components

论文作者

Dulio, Paolo, Frosini, Andrea

论文摘要

在离散层析成像的通常目标中,通过沿离散方向的集合$ u $收集的投影数据,考虑了未知离散集的重建。当且仅当发生切换组件时,可能会出现可能的模棱两可的重建,即,当且仅当存在非空图像沿$ u $中的所有方向的无空预测时。为了降低允许的重建数量,一个人试图将可能的额外几何约束纳入层析成像问题中。特别是,在很大程度上考虑了水平和垂直凸连接的集合的类$ \ mathbb {p} $(简短地,$ hv $ -convex polyominoes)。在本文中,我们介绍了$ HV $ -CONVEX开关组件的类,并在其几何结构上证明了一些初步结果。该类包括当在$ \ Mathbb {p} $中考虑层析成像问题时产生的所有切换组件,这极大地激发了对此类配置的调查。事实证明,所考虑的类可以分别分别以两个闭合图案的脱节子类分区,分别为称为窗口和卷发。因此,所有窗口都有一个唯一的表示,而卷发由子图案的交错序列组成,称为$ z $ - paths,这导致了理解此类序列的组合结构的问题。我们提供了与某些特殊序列相关的卷发家庭的明确结构,还通过许多说明性示例提供了有关进一步或禁止配置的其他详细信息。

In the usual aim of discrete tomography, the reconstruction of an unknown discrete set is considered, by means of projection data collected along a set $U$ of discrete directions. Possible ambiguous reconstructions can arise if and only if switching components occur, namely, if and only if non-empty images exist having null projections along all the directions in $U$. In order to lower the number of allowed reconstructions, one tries to incorporate possible extra geometric constraints in the tomographic problem. In particular, the class $\mathbb{P}$ of horizontally and vertically convex connected sets (briefly, $hv$-convex polyominoes) has been largely considered. In this paper we introduce the class of $hv$-convex switching components, and prove some preliminary results on their geometric structure. The class includes all switching components arising when the tomographic problem is considered in $\mathbb{P}$, which highly motivates the investigation of such configurations. It turns out that the considered class can be partitioned in two disjointed subclasses of closed patterns, called windows and curls, respectively. It follows that all windows have a unique representation, while curls consist of interlaced sequences of sub-patterns, called $Z$-paths, which leads to the problem of understanding the combinatorial structure of such sequences. We provide explicit constructions of families of curls associated to some special sequences, and also give additional details on further allowed or forbidden configurations by means of a number of illustrative examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源