论文标题
Lagrangian COBORDISM的一类
A-infinity category of Lagrangian cobordisms in the symplectization of PxR
论文作者
论文摘要
我们定义了一个Unital $ a_ \ infty $ - 类别,其对象是$ y = p \ times \ times \ mathbb {r} $的符合性的lagangian cobordism,其对配备有增强功能的传奇人物的圆柱末端为负。形态空间是根据浮子络合物$ CTH _+(σ_0,σ_1)$给出的,该版本是由Simplectic Field Theory(SFT)技术定义的Rabinowitz浮动复合物的版本。
We define a unital $A_\infty$-category whose objects are exact Lagrangian cobordisms in the symplectization of $Y=P\times\mathbb{R}$, with negative cylindrical ends over Legendrians equipped with augmentations. The morphism spaces are given in terms of Floer complexes $Cth_+(Σ_0,Σ_1)$ which are versions of the Rabinowitz Floer complex defined by Symplectic Field Theory (SFT) techniques.