论文标题

通过逻辑回归机器学习测试和验证两个形态耀斑预测变量

Testing and Validating Two Morphological Flare Predictors by Logistic Regression Machine Learning

论文作者

Korsos, M. B., Erdelyi, R., Liu, J., Morgan, H.

论文摘要

虽然已知最动态的太阳能活动区(AR)经常发生爆发,从而预测单个耀斑的发生及其大小,但在很大程度上是一个发育中的领域,具有强大的机器学习应用潜力。 目前的工作基于一种方法,该方法是为了定义具有相反极性的ARS混合状态的数值度量。该方法通过采用两个形态学参数来产生令人信服的证据,证明给定AR的混合状态水平与该AR的太阳喷发概率水平之间存在相关的联系:(i)分离参数$ s_ {l-f} $和(ii)水平磁梯度的总和(ii)水平磁梯度$ g_ g_ {s} $。 在这项工作中,我们根据SOHO/MDI-DEBRECEN数据(SDD)和SDO/HMI/HMI-DEBRECEN DATA(HMIDD)Sunspot Catalogs研究了$ S_ {L-F} $和$ G_ {S} $的效率。特别是,我们通过应用逻辑回归机器学习方法来测试和验证两个形态参数的关节预测能力。在这里,我们确认两个参数具有阈值值时,将其应用在一起时,是良好的互补预测指标。此外,每天至少给出70 \%的预测概率。

Whilst the most dynamic solar active regions (ARs) are known to flare frequently, predicting the occurrence of individual flares and their magnitude, is very much a developing field with strong potentials for machine learning applications. The present work is based on a method which is developed to define numerical measures of the mixed states of ARs with opposite polarities. The method yields compelling evidence for the assumed connection between the level of mixed states of a given AR and the level of the solar eruptive probability of this AR by employing two morphological parameters: (i) the separation parameter $S_{l-f}$ and (ii) the sum of the horizontal magnetic gradient $G_{S}$. In this work, we study the efficiency of $S_{l-f}$ and $G_{S}$ as flare predictors on a representative sample of ARs, based on the SOHO/MDI-Debrecen Data (SDD) and the SDO/HMI - Debrecen Data (HMIDD) sunspot catalogues. In particular, we investigate about 1000 ARs in order to test and validate the joint prediction capabilities of the two morphological parameters by applying the logistic regression machine learning method. Here, we confirm that the two parameters with their threshold values are, when applied together, good complementary predictors. Furthermore, the prediction probability of these predictor parameters is given at least 70\% a day before.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源