论文标题
多级对象计数的扩张尺度意识到的注意力转弯
Dilated-Scale-Aware Attention ConvNet For Multi-Class Object Counting
论文作者
论文摘要
对象计数旨在估计图像中对象的数量。领先的计数方法着眼于单个类别计数任务并实现令人印象深刻的性能。请注意,实际场景中有多种对象。多类对象计数扩展了对象计数任务的应用范围。在某些情况下,多目标检测任务可以实现多类对象计数。但是,它需要带有边界框注释的数据集。与主流对象计数问题中的点注释相比,坐标框级注释更难获得。在本文中,我们提出了一个基于点级注释的简单而有效的计数网络。具体而言,我们首先将传统输出通道从一个更改为类别数量,以实现多类计数。由于所有类别的对象在我们提出的框架中使用相同的特征提取器,因此它们的功能将在共享特征空间中相互干扰。我们进一步设计了一个多面具结构,以抑制对象之间的有害互动。对具有挑战性的基准测试的广泛实验表明,所提出的方法实现了最先进的计数性能。
Object counting aims to estimate the number of objects in images. The leading counting approaches focus on the single category counting task and achieve impressive performance. Note that there are multiple categories of objects in real scenes. Multi-class object counting expands the scope of application of object counting task. The multi-target detection task can achieve multi-class object counting in some scenarios. However, it requires the dataset annotated with bounding boxes. Compared with the point annotations in mainstream object counting issues, the coordinate box-level annotations are more difficult to obtain. In this paper, we propose a simple yet efficient counting network based on point-level annotations. Specifically, we first change the traditional output channel from one to the number of categories to achieve multiclass counting. Since all categories of objects use the same feature extractor in our proposed framework, their features will interfere mutually in the shared feature space. We further design a multi-mask structure to suppress harmful interaction among objects. Extensive experiments on the challenging benchmarks illustrate that the proposed method achieves state-of-the-art counting performance.