论文标题

6G用于车辆到所有的通信:启用技术,挑战和机遇

6G for Vehicle-to-Everything (V2X) Communications: Enabling Technologies, Challenges, and Opportunities

论文作者

Noor-A-Rahim, Md., Liu, Zilong, Lee, Haeyoung, Khyam, M. Omar, He, Jianhua, Pesch, Dirk, Moessner, Klaus, Saad, Walid, Poor, H. Vincent

论文摘要

我们正处于具有前所未有的用户体验,道路安全性和空气质量,高度多样化的运输环境和用例以及大量高级应用程序的新时代的新时代的风口浪尖。意识到这一宏伟的愿景需要显着增强的车辆到全部用途(V2X)通信网络,该网络应该非常聪明,并且能够同时支持超快速,超级可靠和低延迟的大规模信息交换。预计第六代(6G)通信系统将满足下一代V2X的这些要求。在本文中,我们概述了来自新材料,算法和系统体系结构等一系列域中的一系列关键启用技术。为了实现真正智能的运输系统,我们设想机器学习将对先进的车辆通信和网络发挥重要作用。为此,我们概述了6G车辆网络中机器学习的最新进展。为了刺激该领域的未来研究,我们讨论了这些技术的力量,开放挑战,成熟度以及增强领域。

We are on the cusp of a new era of connected autonomous vehicles with unprecedented user experiences, tremendously improved road safety and air quality, highly diverse transportation environments and use cases, as well as a plethora of advanced applications. Realizing this grand vision requires a significantly enhanced vehicle-to-everything (V2X) communication network which should be extremely intelligent and capable of concurrently supporting hyper-fast, ultra-reliable, and low-latency massive information exchange. It is anticipated that the sixth-generation (6G) communication systems will fulfill these requirements of the next-generation V2X. In this article, we outline a series of key enabling technologies from a range of domains, such as new materials, algorithms, and system architectures. Aiming for truly intelligent transportation systems, we envision that machine learning will play an instrumental role for advanced vehicular communication and networking. To this end, we provide an overview on the recent advances of machine learning in 6G vehicular networks. To stimulate future research in this area, we discuss the strength, open challenges, maturity, and enhancing areas of these technologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源