论文标题

$ \ overline {\ Mathcal M} _ {g,n} $和BKP层次结构上的交点号

Intersection numbers on $\overline {\mathcal M}_{g,n}$ and BKP hierarchy

论文作者

Alexandrov, Alexander

论文摘要

在他们最近的鼓舞人心的论文中,米罗夫(Mironov)和莫罗佐夫(Morozov)在kontsevich-witten的tau功能方面,就Schur Q-intrunctions而言,这是一个令人惊讶的简单扩展公式。在这里,我们为Brézin-Gross-Witten Tau功能提供了类似的猜想。此外,我们确定了KDV层次结构的两个tau功能,这些函数描述了刺破的Riemann表面的模量空间上的相交数,以及BKP层次结构的超几何解。

In their recent inspiring paper Mironov and Morozov claim a surprisingly simple expansion formula for the Kontsevich-Witten tau-function in terms of the Schur Q-functions. Here we provide a similar conjecture for the Brézin-Gross-Witten tau-function. Moreover, we identify both tau-functions of the KdV hierarchy, which describe intersection numbers on the moduli spaces of punctured Riemann surfaces, with the hypergeometric solutions of the BKP hierarchy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源