论文标题

用于求解普通微分方程的数值和分析方法的概述

An Overview of Numerical and Analytical Methods for solving Ordinary Differential Equations

论文作者

Denis, Byakatonda

论文摘要

微分方程是用于创建科学,工程,经济学,数学,物理学,航空,天文学,动力学,生物学,化学,医学,环境科学,社会科学,银行业,银行业,银行业,银行业和许多其他领域的最重要数学工具之一[7]。一个只有一个自变量的微分方程称为普通微分方程(ODE),并且在其中,所有衍生物均相对于该变量。大多数情况下,变量是时间,t;虽然,我将在本文中使用X作为自变量。未知函数取决于两个或多个变量的微分方程称为部分微分方程(PDE)。普通的微分方程可以通过各种分析和数值来求解。尽管有许多分析方法可以找到微分方程的解决方案,但存在许多无法通过分析求解的微分方程[8]。这意味着该解决方案不能表示为有限数量的基本函数(多项式,指数,三角学和双曲线功能)的总和。对于简单的微分方程,可以找到封闭形式的解决方案[9]。但是在应用中产生的许多微分方程是如此复杂,以至于具有溶液公式有时是不切实际的。或至少如果有溶液公式可用,则可能涉及积分,这些积分只能通过使用数值正交公式来计算。无论哪种情况,数值方法都提供了一个强大的替代工具,用于在规定的初始条件或条件下求解微分方程[9]。在本文中,我提出了解决普通微分方程的基本且常用的数值和分析方法。

Differential Equations are among the most important Mathematical tools used in creating models in the science, engineering, economics, mathematics, physics, aeronautics, astronomy, dynamics, biology, chemistry, medicine, environmental sciences, social sciences, banking and many other areas [7]. A differential equation that has only one independent variable is called an Ordinary Differential Equation (ODE), and all derivatives in it are taken with respect to that variable. Most often, the variable is time, t; although, I will use x in this paper as the independent variable. The differential equation where the unknown function depends on two or more variables is referred to as Partial Differential Equations (PDE). Ordinary differential equations can be solved by a variety of methods, analytical and numerical. Although there are many analytic methods for finding the solution of differential equations, there exist quite a number of differential equations that cannot be solved analytically [8]. This means that the solution cannot be expressed as the sum of a finite number of elementary functions (polynomials, exponentials, trigonometric, and hyperbolic functions). For simple differential equations, it is possible to find closed form solutions [9]. But many differential equations arising in applications are so complicated that it is sometimes impractical to have solution formulas; or at least if a solution formula is available, it may involve integrals that can be calculated only by using a numerical quadrature formula. In either case, numerical methods provide a powerful alternative tool for solving the differential equations under the prescribed initial condition or conditions [9]. In this paper, I present the basic and commonly used numerical and analytical methods of solving ordinary differential equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源