论文标题

QoS Aware Robot轨迹优化具有IRS辅助毫米波通信

QoS Aware Robot Trajectory Optimization with IRS-Assisted Millimeter-Wave Communications

论文作者

Tatino, Cristian, Pappas, Nikolaos, Yuan, Di

论文摘要

在本文中,我们考虑了使用智能反射表面(IRS)协助的机器人的运动能量最小化问题。机器人必须在给定的截止日期内执行任务,并且要受到上行链接质量(QOS)约束的约束。这个问题对于由自动驾驶机器人和新一代移动通信(即5G和6G)所支配的全自动工厂至关重要。在这种新背景下,机器人的能源效率和通信可靠性仍然是基本问题,这些问题促进了优化机器人轨迹和沟通QoS的基本问题。更准确地说,要考虑机器人位置与通信QoS之间的相互依赖性,机器人轨迹和IRS的波束形成和接入点都需要优化。我们提出了一个解决方案,可以通过利用MM波通道特性来解除两个问题。然后,为波束形成优化问题获得了封闭形式的解决方案,而轨迹通过一​​种新型的基于基于连续的convex优化的算法进行了优化,该算法可以处理突然的视线线(LOS)到非线视线(NLOS)过渡。具体而言,该算法使用无线电图来避免与障碍物和覆盖区域较差的碰撞。我们证明算法可以收敛到满足Karush-Kuhn-Tucker条件的溶液。模拟结果表明,相对于旨在找到最大速率轨迹的方法,该算法的快速收敛速率以及运动能量消耗的急剧降低。此外,我们表明,被动IRSS的使用代表了提高机器人的无线电覆盖范围和运动能效的强大解决方案。

In this paper, we consider the motion energy minimization problem for a robot that uses millimeter-wave (mm-wave) communications assisted by an intelligent reflective surface (IRS). The robot must perform tasks within given deadlines and it is subject to uplink quality of service (QoS) constraints. This problem is crucial for fully automated factories that are governed by the binomial of autonomous robots and new generations of mobile communications, i.e., 5G and 6G. In this new context, robot energy efficiency and communication reliability remain fundamental problems that couple in optimizing robot trajectory and communication QoS. More precisely, to account for the mutual dependency between robot position and communication QoS, robot trajectory and beamforming at the IRS and access point all need to be optimized. We present a solution that can decouple the two problems by exploiting mm-wave channel characteristics. Then, a closed-form solution is obtained for the beamforming optimization problem, whereas the trajectory is optimized by a novel successive-convex optimization-based algorithm that can deal with abrupt line-of-sight (LOS) to non-line-of-sight (NLOS) transitions. Specifically, the algorithm uses a radio map to avoid collisions with obstacles and poorly covered areas. We prove that the algorithm can converge to a solution satisfying the Karush-Kuhn-Tucker conditions. The simulation results show a fast convergence rate of the algorithm and a dramatic reduction of the motion energy consumption with respect to methods that aim to find maximum-rate trajectories. Moreover, we show that the use of passive IRSs represents a powerful solution to improve the radio coverage and motion energy efficiency of robots.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源