论文标题

稳定与安全保证的MPC学习

Learning for MPC with Stability & Safety Guarantees

论文作者

Gros, Sébastien, Zanon, Mario

论文摘要

在最近的文献中,学习方法与模型预测控制(MPC)的结合吸引了大量关注。这种组合的希望是减少MPC方案对准确模型的依赖,并利用快速开发的机器学习和增强学习工具,以利用许多系统可用的数据量。特别是,增强学习和MPC的结合已被认为是一种可行且理论上合理的方法,以引入可解释,安全和稳定的策略在增强学习中。但是,一种正式的理论详细介绍了如何通过学习工具提供的参数更新来维持基于MPC的策略的安全性和稳定性。本文解决了这一差距。该理论是针对通用强大的MPC情况开发的,并在基于强大的管线MPC情况的模拟中应用,在该情况下,该理论在实践中很容易部署。本文着重于增强学习作为学习工具,但它适用于任何在线更新MPC参数的学习方法。

The combination of learning methods with Model Predictive Control (MPC) has attracted a significant amount of attention in the recent literature. The hope of this combination is to reduce the reliance of MPC schemes on accurate models, and to tap into the fast developing machine learning and reinforcement learning tools to exploit the growing amount of data available for many systems. In particular, the combination of reinforcement learning and MPC has been proposed as a viable and theoretically justified approach to introduce explainable, safe and stable policies in reinforcement learning. However, a formal theory detailing how the safety and stability of an MPC-based policy can be maintained through the parameter updates delivered by the learning tools is still lacking. This paper addresses this gap. The theory is developed for the generic Robust MPC case, and applied in simulation in the robust tube-based linear MPC case, where the theory is fairly easy to deploy in practice. The paper focuses on Reinforcement Learning as a learning tool, but it applies to any learning method that updates the MPC parameters online.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源