论文标题
带有大系数和应用的时期戒指
Period Rings with Big Coefficients and Applications I
论文作者
论文摘要
遵循Kedlaya-liu的想法,我们将考虑将以前的工作扩展到更一般的ADIC空间的背景下,这将是相对$ p $ - 亚种霍奇结构的相应变形,而不是更一般的ADIC空间。这意味着变形也可以通过ADIC空间(Perfectoid,Pedsperfectoid,相对完美的素等)来实现。实际上,这里的整个项目的一部分是受Scholze后相应的Drinfeld的引理以及Carter-Kedlaya-Zábrádi的作品的启发,该钻石的作品旨在研究欧特尔基本群体产物的代表理论。此外,我们从非交通性分析的几何形状和非交通性的塔玛川数字猜想中获得动机。
Following ideas of Kedlaya-Liu, we are going to consider extending our previous work to the context of more general adic spaces, which will be corresponding deformation of the relative $p$-adic Hodge structure over more general adic spaces. This means that the deformation could be also realized by an adic spaces (perfectoid, preperfectoid, relatively perfectoid and so on). Parts of the whole project here actually are inspired by the corresponding Drinfeld's lemma for diamonds after Scholze, as well as the work from Carter-Kedlaya-Zábrádi which is aimed at studying the representation theory of products of étale fundamental groups. Moreover, we gain motivations from noncommutative analytic geometries and noncommutative Tamagawa number conjectures.